Problem 5106. Let a, b and c be the sides of an acute angled triangle $A B C$. Let H be the orthocenter and let d_{a}, d_{b} and d_{c} be the distances from H to the sides $B C, C A$ and $A B$ respectively. Show that

$$
d_{a}+d_{b}+d_{c} \leq \frac{3}{4} D
$$

where D is the diameter of the circumcircle.
Proposed by Michael Brozinsky, Central Islip, NY
Solution by Ercole Suppa, Teramo, Italy

Let H_{a}, H_{b}, H_{c} be the feet of A, B, C onto the sides $B C, C A, A B$ respectively and let R be the circumradius of $\triangle A B C$. We have

$$
d_{a}=B H_{a} \cdot \tan \left(90^{\circ}-C\right)=c \cos B \cot C
$$

Hence, taking into account of extended sine law, we get

$$
\begin{equation*}
d_{a}=2 R \sin C \cos B \cot C=2 R \cos B \cos C \tag{1}
\end{equation*}
$$

Now, by using (1) and its cyclic permutations, the given inequality rewrites as

$$
\begin{align*}
2 R \cos B \cos C+2 R \cos C \cos A+2 R \cos A \cos B & \leq \frac{3}{4} \cdot 2 R \\
\cos B \cos C+\cos C \cos A+\cos A \cos B & \leq \frac{3}{4} \tag{2}
\end{align*}
$$

which is true. In fact, from the well known formulas

$$
\sum \cos ^{2} A=1-2 \cos A \cos B \cos C
$$

and

$$
0 \leq \cos A \cos B \cos C \leq \frac{1}{8}
$$

both valid for an acute-angled triangle, we get immediately

$$
\begin{equation*}
\sum \cos ^{2} A \geq \frac{3}{4} \tag{3}
\end{equation*}
$$

Hence, by applying the known inequality

$$
1<\cos A+\cos B+\cos C \leq \frac{3}{2}
$$

we obtain

$$
\begin{array}{cc}
(\cos A+\cos B+\cos C)^{2} \leq \frac{9}{4} & \Rightarrow \\
\sum \cos ^{2} A+2 \sum \cos B \cos C \leq \frac{9}{4} & \Rightarrow \\
2 \sum \cos B \cos C \leq \frac{9}{4}-\sum \cos ^{2} A \leq \frac{9}{4}-\frac{3}{4}=\frac{3}{2} & \Rightarrow \\
\sum \cos B \cos C \leq \frac{3}{4} &
\end{array}
$$

and the conclusion follows. Equality holds for $a=b=c$.

